Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732920

ABSTRACT

Wireless communication represents the basis for the next generation of vehicle safety systems, whereas visible light communication (VLC) is one of the most suitable technologies for this purpose. In this context, this work introduces a novel VLC receiver architecture that integrates a field-of-view (FoV) adaptation mechanism in accordance with the optical noise generated by the sun. In order to demonstrate the benefits of this concept, a VLC prototype was experimentally tested in an infrastructure-to-vehicle (I2V) VLC configuration, which uses an LED traffic light as the transmitter. At the receiver side, an automatic FoV adaptation mechanism was designed based on a mechanical iris placed in front of a photodetector. Adjustments were made based on the values recorded by a multi-angle light sensor, built with an array of IR photodiodes covering an elevation from 0° to 30° and an azimuth from -30° to 30°. Depending on the incidence of solar light, the mechanical iris can adjust the FoV from ±1° to ±22°, taking into account both the light irradiance and the sun's position relative to the VLC receiver. For experimental testing, two identical VLC receivers were used: one with an automatic FoV adjustment, and the other with a ±22° fixed FoV. The test results performed at a distance of 50 m, in the presence of solar irradiance reaching up to 67,000 µW/cm2, showed that the receiver with a fixed FoV saturated and lost the communication link most of the time, whereas the receiver with an adjustable FoV maintained an active link throughout the entire period, with a bit error rate (BER) of less than 10-7.

2.
Sensors (Basel) ; 23(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067777

ABSTRACT

Severe visual impairment and blindness significantly affect a person's quality of life, leading sometimes to social anxiety. Nevertheless, instead of concentrating on a person's inability, we could focus on their capacities and on their other senses, which in many cases are more developed. On the other hand, the technical evolution that we are witnessing is able to provide practical means that can reduce the effects that blindness and severe visual impairment have on a person's life. In this context, this article proposes a novel wearable solution that has the potential to significantly improve blind person's quality of life by providing personal assistance with the help of Visible Light Communications (VLC) technology. To prevent the wearable device from drawing attention and to not further emphasize the user's deficiency, the prototype has been integrated into a smart backpack that has multiple functions, from localization to obstacle detection. To demonstrate the viability of the concept, the prototype has been evaluated in a complex scenario where it is used to receive the location of a certain object and to safely travel towards it. The experimental results have: i. confirmed the prototype's ability to receive data at a Bit-Error Rate (BER) lower than 10-7; ii. established the prototype's ability to provide support for a 3 m radius around a standard 65 × 65 cm luminaire; iii. demonstrated the concept's compatibility with light dimming in the 1-99% interval while maintaining the low BER; and, most importantly, iv. proved that the use of the concept can enable a person to obtain information and guidance, enabling safer and faster way of traveling to a certain unknown location. As far as we know, this work is the first one to report the implementation and the experimental evaluation of such a concept.


Subject(s)
Visually Impaired Persons , Wearable Electronic Devices , Humans , Quality of Life , Blindness , Light
3.
Sensors (Basel) ; 23(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299727

ABSTRACT

Visible light communications (VLC) are an emerging technology that is increasingly demonstrating its ability to provide wireless communications in areas where radio frequency (RF) technology might have some limitations. Therefore, VLC systems offer possible answers to various applications in outdoor conditions, such as in the road traffic safety domain, or even inside large buildings, such as in indoor positioning applications for blind people. Nevertheless, several challenges must still be addressed in order to obtain a fully reliable solution. One of the most important challenges is focused on further improving the immunity to optical noise. Different from most works, where on-off keying (OOK) modulation and Manchester coding have been the preferred choices, this article proposes a prototype based on a binary frequency-shift keying (BFSK) modulation and non-return-to-zero (NRZ) coding, for which the resilience to noise is compared to that of a standard OOK VLC system. The experimental results showed an optical noise resilience improvement of 25% in direct exposure to incandescent light sources. The VLC system using BFSK modulation was able to maintain a maximum noise irradiance of 3500 µW/cm2 as compared with 2800 µW/cm2 for the OOK modulation, and an improvement of almost 20% in indirect exposure to the incandescent light sources. The VLC system with BFSK modulation was able to maintain the active link in an equivalent maximum noise irradiance of 65,000 µW/cm2, as opposed to the equivalent 54,000 µW/cm2 for the OOK modulation. Based on these results, one can see that based on a proper system design, VLC systems are able to provide impressive resilience to optical noise.


Subject(s)
Household Articles , Light , Humans , Communication , Radio Waves , Records
4.
Sensors (Basel) ; 23(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050717

ABSTRACT

Due to its unique advantages, the integration of Visible Light Communications (VLC) in vehicle safety applications has become a major research topic. Nevertheless, as this is an emergent technology, several challenges must be addressed. One of the most important of these challenges is oriented toward increasing vehicular VLC systems' communication range. In this context, this article proposes a novel approach that provides a significant communication distance enhancement. Different from most existing works on this topic, which are based on refining the VLC receiver, this new article is focused on improving the VLC system based on the benefits that can be achieved through the VLC transmitter. The concept is based on Light-Emitting Diode (LED) current overdriving and a modified Variable Pulse Position Modulation (VPPM). Therefore, LED current overdriving provides the VLC receiver higher instantaneous received optical power and improved Signal-to-Noise Ratio (SNR), whereas the use of the VPPM ensures that the VLC transmitter respects eye regulation norms and offers LED protection against overheating. The concept has been experimentally tested in laboratory conditions. The experimental results confirmed the viability of the concept, showing an increase of the communication range by up to 370%, while maintaining the same overall optical irradiance at the VLC transmitter level. Therefore, this new approach has the potential to enable vehicular VLC ranges that cover the requirements of communication-based vehicle safety applications. To the best of our knowledge, this concept has not been previously exploited in vehicular VLC applications.

5.
Sensors (Basel) ; 23(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37112170

ABSTRACT

Visible Light Communications (VLC) are developing as an omnipresent solution for inter-vehicle communications. Based on intensive research efforts, the performance of vehicular VLC systems has significantly improved in terms of noise resilience, communication range, and latencies. Nevertheless, in order to be ready for deployment in real applications, solutions for Medium Access Control (MAC) are also required. In this context, this article provides an intensive evaluation of several optical CDMA MAC solutions and of their efficiency in mitigating the effect of Multiple User Interference (MUI). Intensive simulation results showed that an adequately designed MAC layer can significantly reduce the effects of MUI, ensuring an adequate Packet Delivery Ratio (PDR). The simulation results showed that based on the use of optical CDMA codes, the PDR can be improved from values as low as 20% up to values between 93.2% and 100%. Consequently, the results provided in this article show the high potential of optical CDMA MAC solutions in vehicular VLC applications, reconfirm the high potential of the VLC technology in inter-vehicle communications, and emphasize the need to further develop MAC solutions designed for such applications.

6.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904756

ABSTRACT

Vehicular visible light communications (VLC) are considered a suitable technology for vehicular platooning applications. Nevertheless, this domain imposes strict performance requirements. Although numerous works have shown that VLC technology is compatible with platooning applications, existing studies are mainly focused on the physical layer performances, mostly ignoring the disruptive effects generated by neighboring vehicular VLC links. Nevertheless, the 5.9 GHz Dedicated Short Range Communications (DSRC) experience has shown that mutual interference can significantly affect the packed delivery ratio, pointing out that these effects should be analyzed for vehicular VLC networks as well. In this context, this article provides a comprehensive investigation focused on the effects of mutual interference generated by neighboring vehicle-to-vehicle (V2V) VLC links. Therefore, this work provides an intensive analytical investigation based on simulation and also on experimental results that demonstrate that although ignored, the influence of mutual interference is highly disruptive in vehicular VLC applications. Hence, it has been shown that without preventive measures, the Packet Delivery Ratio (PDR) can decrease below the imposed 90% limit for almost the entire service area. The results have also shown that although less aggressive, multi-user interference affects V2V links even in short-distance conditions. Therefore, this article has the merit of emphasizing a new challenge for vehicular VLC links and points out the importance of multiple-access techniques integration.

7.
Sensors (Basel) ; 22(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36146084

ABSTRACT

Visible light communications emerges as a promising wireless communication technology that has been found suitable for numerous indoor and outdoor applications. In this article, a new in-vehicle VLC system is designed, implemented, and experimentally evaluated. The purpose of this new system is to provide car passengers with optical wireless communications. The proposed system consists of a VLC emitter integrated into the vehicle's ambient lighting system and a mobile VLC receiver. Unlike any previous works, this article proposes a VLC emitter in which the light from a 3 W LED is distributed on a 2 square meter surface using 500 optical fibers whose main purpose is a decorative one. The proposed prototype has been implemented on a car and evaluated in relevant working conditions. The experimental evaluation of the proposed system has demonstrated the viability of the proposed concept and showed a data rate of 250 kb/s while providing a BER lower than 10-7. As far as we know, the proposed concept is totally new in the VLC literature, opening a new area of utilization for VLC technology: using VLC with optical fiber distributed light.

8.
Sensors (Basel) ; 22(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897984

ABSTRACT

In urban areas, pedestrians are the road users category that is the most exposed to road accident fatalities. In this context, the present article proposes a totally new architecture, which aims to increase the safety of pedestrians on the crosswalk. The first component of the design is a pedestrian detection system, which identifies the user's presence in the region of the crosswalk and determines the future street crossing action possibility or the presence of a pedestrian engaged in street crossing. The second component of the system is the visible light communications part, which is used to transmit this information toward the approaching vehicles. The proposed architecture has been implemented at a regular scale and experimentally evaluated in outdoor conditions. The experimental results showed a 100% overall pedestrian detection rate. On the other hand, the VLC system showed a communication distance between 5 and 40 m when using a standard LED light crosswalk sign as a VLC emitter, while maintaining a bit error ratio between 10-7 and 10-5. These results demonstrate the fact that the VLC technology is now able to be used in real applications, making the transition from a high potential technology to a confirmed technology. As far as we know, this is the first article presenting such a pedestrian street crossing assistance system.

9.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209662

ABSTRACT

The use of Visible Light Communications (VLC) in vehicular applications has become a major research area due to its simplicity, high performance to cost ratio, and great deployment potential. In this context, this article provides one of the very few analyses and experimental evaluations concerning the integration of a light dimming function in vehicular VLC systems. For this purpose, a vehicle-to-vehicle VLC prototype has been implemented and used to evaluate the systems' communication performances in light dimming conditions, while decreasing the duty cycle from 40% to 1%, and increasing the communication range from 1 to 40-50 m. The experimental results showed that in normal lighting conditions, the VLC technology can easily support low duty cycle light dimming for ranges up to 40 m, while maintaining a 10-6 BER. Nevertheless, in strong optical noise conditions, when the system reaches its SNR limit, the communication range can decrease by half, whereas the BER can increase by 2-4 orders of magnitude. This article provides consistent evidence concerning the high potential of the VLC technology to support inter-vehicle communication links, even in light dimming conditions.

10.
Sensors (Basel) ; 21(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063873

ABSTRACT

The use of visible light communications technology in communication-based vehicle applications is gaining more and more interest as the research community is constantly overcoming challenge after challenge. In this context, this article addresses the issues associated with the use of Visible Light Communications (VLC) technology in Vehicle-to-Vehicle (V2V) communications, while focusing on two crucial issues. On the one hand, it aims to investigate the achievable communication distance in V2V applications while addressing the least favorable case, namely the one when a standard vehicle rear lighting system is used as a VLC emitter. On the other hand, this article investigates another highly unfavorable use case scenario, i.e., the case when two vehicles are located on adjacent lanes, rather than on the same lane. In order to evaluate the compatibility of the VLC technology with the usage in inter-vehicle communication, a VLC prototype is intensively evaluated in outdoor conditions. The experimental results show a record V2V VLC distance of 75 m, while providing a Bit Error Ratio (BER) of 10-7-10-6. The results also show that the VLC technology is able to provide V2V connectivity even in a situation where the vehicles are located on adjacent lanes, without a major impact on the link performances. Nevertheless, this situation generates an initial no-coverage zone, which is determined by the VLC receiver reception angle, whereas in some cases, vehicle misalignment can generate a BER increase that can go up to two orders of magnitude.

11.
Sensors (Basel) ; 20(13)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635604

ABSTRACT

Visible light communications are considered as a promising solution for inter-vehicle communications, which in turn can significantly enhance the traffic safety and efficiency. However, the vehicular visible light communications (VLC) channel is highly dynamic, very unpredictable, and subject to many noise sources. Enhancing VLC systems with self-aware capabilities would maximize the communication performances and efficiency, whatever the environmental conditions. Within this context, this letter proposes a novel signal to noise ratio (SNR)-adaptive visible light communication receiver architecture aimed for automotive applications. The novelty of this letter comes from an open loop signal processing technique in which the signal treatment complexity is established based on a real-time SNR analysis. So, the receiver evaluates the SNR, and based on this assessment, it reconfigures its structural design in order to ensure a proper signal treatment, while providing an optimal tradeoff between communication performances and computational resources usage. This approach based on software reconfiguration has the potential to provide the system with enhanced flexibility and enables its usage in resource sharing application. As far as we know, this approach has not been considered in vehicular VLC systems. The performances of the proposed architecture are demonstrated by simulations, which confirm the SNR-adaptive capacity and the optimized performances.

12.
Sensors (Basel) ; 20(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512759

ABSTRACT

As the interest toward communication-based vehicle safety applications is increasing, the development of secure wireless communication techniques has become an important research area. In this context, the article addresses issues that are related to the use of the visible light communication (VLC) technology in vehicular applications. Thus, it provides an extensive presentation concerning the main challenges and issues that are associated to vehicular VLC applications and of some of the existing VLC solutions. Moreover, the article presents the aspects related to the design and intensive experimental evaluation of a new automotive VLC system. The experimental evaluation performed in indoor and outdoor conditions shows that the proposed system can achieve communication distances up to 50 m and bit error ratio (BER) lower than 10-6, while being exposed to optical and weather perturbations. This article provides important evidence concerning the snowfall effect on middle to long range outdoor VLC, as the proposed VLC system was also evaluated in snowfall conditions. Accordingly, the experimental evaluation showed that snowfall and heavy gust could increase bit error rate by up to 10,000 times. Even so, this article provides encouraging evidence that VLC systems will soon be able to reliably support V2X communications.

13.
Sensors (Basel) ; 20(3)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046288

ABSTRACT

The usage of Visible Light Communications (VLC) technology in automotive applications is very promising. Nevertheless, in outdoor conditions, the performances of existing VLC systems are strongly affected by the sun or other sources of light. In such situations, the strong parasitic light can saturate the photosensitive element and block data communication. To address the issue, this article analyzes the usage of an adaptive logarithmic transimpedance circuit as an alternative to the classical linear transimpedance circuit. The simulation and experimental evaluation demonstrate benefits of the proposed technique, as it significantly expands the communication distance and optical noise functionality range of the VLC systems and reduces the possibility of photoelement saturation. As a result, this approach might enable outdoor VLC sensors to work in strong sun conditions, the experimental results confirming its validity not only in the laboratory but also in outdoor conditions. A reliable 50 m communication distance is reported for outdoor sunny conditions using a standard power traffic light VLC emitter and a PIN photodiode VLC sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...